CHAPTER SEVEN

POLYGONS

Definition:

A polygon is a plane figure which is bounded by straight lines.

Polygons	
Number of sides	Name
3	triangle
4	quadrilateral
5	pentagon
6	hexagon
7	heptagon
8	octagon
9	nonagon
10	decagon

- A polygon has both interior as well as exterior angles.
- The interior angles of a polygon are those angles which lie within the polygon.
- The exterior angles of a polygon lie outside the polygon.

I = interior angle.

e = exterior angle.

N/B: For any polygon, the sum of the exterior angles = 360° .

Q1. Calculate the value of each exterior angle of a regular decagon.

<u>Soln.</u>

Decagon has 10 sides and as such 10 exterior angles.

But the sum of the exterior angles of any polygon = 360° .

 \Rightarrow 10 exterior angles = 360^o.

$$\therefore 1 \text{ exterior angle} = \frac{1}{10} \times 360$$
$$= 36^{\circ}.$$

 \Rightarrow each exterior angle of a decagon = 36° .

Q2. Find the exterior angle of a regular pentagon.

<u>Soln.</u>

Pentagon has 5 sides, and as such 5 exterior angles. But the sum of the exterior angles of a polygon = 360°

$$\Rightarrow 5 \text{ exterior angles} = 360$$
$$\Rightarrow 1 \text{ exterior angle} = \frac{1}{5} \times 360$$
$$= 72^{\circ}.$$

 \therefore Each exterior angle of the regular pentagon =72⁰. For any polygon, the sum of the exterior angle and the exterior angle at any of its vertices = 180⁰.

Determination of the interior angle of a regular polygon:

- We must first determine the value of the exterior angle.

- Using the fact that at any vertex, exterior angle + interior angle = 180° .

 \Rightarrow interior angle = 180⁰ - exterior angle.

Q1. Calculate the interior angles of a regular decagon.

<u>Soln.</u>

Decagon has 10 exterior angles

 \Rightarrow 10 exterior angles = 360^o.

$$\therefore$$
 1 exterior angle = $\frac{1}{10} \times 360$

$$= 36^{\circ}$$
.

But at any vertex, exterior angle + interior angle = 180° .

 \Rightarrow 36⁰ + interior angle = 180⁰.

Interior angle = $180^{\circ} - 36^{\circ} = 144^{\circ}$.

The interior angle of the decagon = 144° .

Q2. Find the value of each Interior angle of a triangle.

<u>Soln.</u>

A triangle has 3 sides and as such 3 exterior angles.

⇒ 3 exterior angles =
$$360^{\circ}$$

∴ 1 exterior angle = $\frac{1}{3} \times 360^{\circ}$

 $= 120^{\circ}$.

But at any vertex, interior angle + exterior angle = 180°

 \Rightarrow Interior angle + 120⁰ = 180⁰

 \therefore Interior angle = 60°

Determination of the sum or the total interior angles of a polygon:

For any polygon, the sum of the interior angles = the number of sides of the polygon \times the value of one interior angle.

Q1. Calculate the sum of the interior angles of a regular decagon.

<u>Soln.</u>

Decagon has 10 exterior angles

$$\Rightarrow$$
 10 exterior angles = 360^o

$$\therefore 1 \text{ exterior angle} = \frac{1}{10} \times 360^{\circ}$$
$$= 36^{\circ}.$$

But at any vertex, interior angle + exterior angle = 180°

$$\Rightarrow$$
 Interior angle + 36⁰ = 180⁰

$$\Rightarrow$$
 Interior angle = $180 - 36$

 \Rightarrow Interior angle = 144⁰.

But the sum of the interior angles of a decagon = interior angle \times the number of sides.

 \therefore Sum of interior angles of the decagon = $144^0 \times 10 = 1440^0$.

Q2. Find the sum of the interior angles of a regular octagon.

<u>Soln.</u>

Octagon has eight sides and as such eight exterior angles.

⇒ 8 exterior angles = 360° ∴ 1 exterior angle = $\frac{1}{8} \times 360^{\circ}$ = 45° .

But at any vertex, exterior angle + interior angle = 180°

$$\therefore 45^{\circ}$$
 + interior angle = 180°

 \Rightarrow Interior angle = $180 - 45 = 135^{\circ}$.

But the sum of interior angle = the number of sides of the polygon × interior angle = $8 \times 135^{0} = 1080^{0}$.

Q3.The interior angles of a regular triangle are marked $20^0 + 2x^0$, $10^0 + 5x^0$ and $40^0 + 4x^0$. Find the actual values of each of these angles.

N/B: First calculate the sum of the interior angles of the triangle.

<u>Soln.</u>

Triangle has 3 exterior angles

$$\Rightarrow$$
 3 exterior angles = 360^o

$$\therefore 1 \text{ exterior angle} = \frac{1}{3} \times 360^{\circ}$$
$$= 120^{\circ}.$$

But at any vertex, exterior angle + interior angle = 180°

$$\Rightarrow 120^{\circ} + \text{interior angle} = 180^{\circ}$$

$$\Rightarrow$$
 Interior angle = $180^{\circ} - 120^{\circ} = 60^{\circ}$.

But the sum of the interior angles of the triangle = the number of sides × interior angle = $3 \times 60 = 180^{\circ}$.

But the interior angles of the triangle are given as $20^{0} + 2x^{0}$, $10^{0} + 5x^{0}$ and $40^{0} + 4x^{0}$. The sum of these interior angles = $20^{0} + 2x^{0} + 10^{0} + 5x^{0} + 40^{0} + 4x^{0}$ = $20^{0} + 10^{0} + 40^{0} + 2x^{0} + 5x^{0} + 4x^{0} = 70^{0} + 11x$.

But the sum of the interior angles of the polygon or triangle = 180°

$$\Rightarrow 70 + 11x = 180^{0}$$

$$\Rightarrow 11x = 180^{0} - 70 = 110^{0}$$

$$\Rightarrow x = \frac{110}{11} = 10^{0}.$$

$$\therefore \text{ The engle merical } 20^{0} + 2x = 20 + 2(10) = 20^{0} + 20^{0} = 40^{0}$$

: The angle marked $20^{\circ} + 2x = 20 + 2(10) = 20^{\circ} + 20^{\circ} = 40^{\circ}$.

The angle marked $10^0 + 5x^0 = 10^0 + 50(10) = 10 + 50^0 = 60^0$.

Lastly, the angle marked $40^{0} + 4x^{0} = 40 + 4(10) = 40 + 40 = 80^{0}$.